
The Basis System, part 1

The Basis Development Team

November 13, 2007

Lawrence Livermore National Laboratory
Email: basis-devel@lists.llnl.gov

COPYRIGHT NOTICE
All files in the Basis system are Copyright 1994-2001, by the Regents of the University of California. All rights reserved. This work was produced
at the University of California, Lawrence Livermore National Laboratory (UC LLNL) under contract no. W-7405-ENG-48 (Contract 48) between
the U.S. Department of Energy (DOE) and The Regents of the University of California (University) for the operation of UC LLNL. Copyright is
reserved to the University for purposes of controlled dissemination, commercialization through formal licensing, or other disposition under terms of
Contract 48; DOE policies, regulations and orders; and U.S. statutes. The rights of the Federal Government are reserved under Contract 48 subject
to the restrictions agreed upon by the DOE and University as allowed under DOE Acquisition Letter 88-1.

DISCLAIMER
This software was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government
nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its specific commercial
products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or the University of California. The views and opinions of the authors expressed
herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising
or product endorsement purposes.

DOE Order 1360.4A Notice
This computer software has been developed under the sponsorship of the Department of Energy. Any further distribution by any holder of this
software package or other data therein outside of DOE offices or other DOE contractors, unless otherwise specifically provided for, is prohibited
without the approval of the Energy, Science and Technology Software Center. Requests from outside the Department for DOE-developed computer
software shall be directed to the Director, ESTSC, P.O. Box 1020, Oak Ridge, TN, 37831-1020.

UCRL-MA-118543

CONTENTS

1 The Basis System 1
1.1 Environment Variables. 1
1.2 Basis Is Both a Program and a Development System. 1
1.3 About This Manual. 2

2 Getting Started 5
2.1 What is Basis?. 5
2.2 Starting the Program. 5
2.3 Getting Information . 6
2.4 Comparison of Basis and Fortran. 7

3 The Basis Language 9
3.1 Assignments and Expressions. 9
3.2 Input from a File .11
3.3 Some Differences from Fortran. 11
3.4 Declaring Variables .12
3.5 Some Elements of Array Syntax. 13
3.6 IF Statements. .14
3.7 Looping Constructs .14
3.8 Vector Syntax. .15
3.9 Differences between Basis and Fortran. 16

4 Graphics 19

5 Text Input and Output 21
5.1 Stream Input. .21
5.2 Stream Output. .23

6 Functions 25
6.1 Defining Functions. .25
6.2 Arguments Passed by Value. .26
6.3 Further Differences with Fortran. 27

i

7 Built-in and Compiled Functions 29
7.1 max and min Versus sup and inf. 30
7.2 iota and spanl. .31
7.3 Information about Arrays: length, shape. 31
7.4 Summing Arrays: sum. .33
7.5 Vector Conditionals with where. 33

8 Commands 35
8.1 The Basis Command Capability. 35

9 Saving and Restoring Code and Data in Binary 39
9.1 The PFB Package. .39
9.2 Reading in Previously Saved Data. 40

10 Error Recovery and Diagnosis 41
10.1 Error Recovery. .41
10.2 Syntactic and Semantic Errors. .41

11 Deciphering Commands 47

Index 51

ii

CHAPTER

ONE

The Basis System

1.1 Environment Variables

Before using Basis, you should set some environment variables as follows.

• BASIS ROOT should contain the name of the root of your Basis installation,
/usr/apps/basis for example.

• MANPATHshould contain a component$BASIS ROOT/man.

• Your path should contain a component$BASIS ROOT/bin .

• DISPLAY should contain the name of your X-Windows display, if you will be doing X-
window plotting.

• NCARGROOTshould contain the name of the root directory of your NCAR 4.0.1 or later
distribution, if you have it.

Check with your System Manager for the exact specifications on your local systems.

1.2 Basis Is Both a Program and a Development System

Basis is a system for developing interactive computer programs in Fortran, with some support for
C and C++ as well. Using Basis you can create a program that has a sophisticated programming
language as its user interface so that the user can set, calculate with, and plot, all the major variables
in the program. The program author writes only the scientific part of the program; Basis supplies
an environment in which to exercise that scientific programming, which includes an interactive
language, an interpreter, graphics, terminal logs, error recovery, macros, saving and retrieving
variables, formatted I/O, and on-line documentation.

basis is the name of the program which results from loading the Basis System with no attached
physics. It is a useful program for interactive calculations and graphics. Authors create other
programs by specifying one or more packages of variables and modules to be loaded. A package

1

is specified using a Fortran source and a variable description file in which the user specifies the
common blocks to be used in the Fortran source and the functions or subroutines that are to be
callable from the interactive language parser.

Basis programs aresteerable applications, that is, applications whose behavior can be greatly
modified by their users. Basis also contains optional facilities to help authors do their jobs more
easily. A library of Basis packages is available that can be added to a program in a few seconds.
The programmable nature of the application simplifies testing and debugging.

The Basis Language includes variable and function declarations, graphics, several looping and
conditional control structures, array syntax, operators for multiplication, dot product, transpose,
array or character concatenation, and a stream I/O facility. Data types include real, double, integer,
complex, logical, character, chameleon, and structure. There are more than 100 built-in functions,
including all the Fortran intrinsics.

Basis’ interaction with compiled routines is particularly powerful. When calling a compiled routine
from the interactive language, Basis verifies the number of arguments and coerces the types of the
actual arguments to match those expected by the function. A compiled function can also call a
user-defined function passing arguments through common.

1.3 About This Manual

The Basis manual is presented in several parts:

I. Running a Basis Program, A Tutorial

II. Basis Language Reference

III. EZN User Manual: The Basis Graphics Package

IV. The EZD Interface

V. Writing Basis Programs: A Manual For Program Authors

VI. The Basis Package Library

VII. MPPL Reference Manual

The first three parts form a basic document set for a user of programs written with Basis. The
remainder form a document set for an author of such programs.

Basis is available on most Unix and Unix-variant platforms. It is not available for Windows or
Macintosh operating systems.

A great many people have helped create Basis and its documentation. The original author was
Paul Dubois. Other major contributors, in alphabetical order, have been Robyn Allsman, Kelly
Barrett, Cathleen Benedetti, Stewart Brown, Lee Busby, Yu-Hsing Chiu, Jim Crotinger, Barbara
Dubois, Fred Fritsch, David Kershaw, Bruce Langdon, Zane Motteler, Jeff Painter, David Sinck,

2 Chapter 1. The Basis System

Allan Springer, Bert Still, Janet Takemoto, Lee Taylor, Susan Taylor, Peter Willmann, and Sharon
Wilson. The authors of this manual stand as representative of their efforts and those of a much
larger number of additional contributors.

Send any comments about these documents to ”basis-devel@lists.llnl.gov” on the Internet.

1.3. About This Manual 3

4

CHAPTER

TWO

Getting Started

2.1 What is Basis?

Basis is two things: It is a system used to produce computer programs, and it is the name of a
programming language which serves as the user interface to a program so produced. To say it
another way, an author uses the Basis System to make a program namedfoo, and the user uses
the Basis Language to write the input file forfoo. Just to add to the confusion, one suchfoo is a
program namedbasis, which consists of nothing but an interpreter for the Basis Language.

The purpose of this manual is to give you a quick introduction to working with the Basis Language,
so that you can get going as rapidly as possible. This tutorial is not a complete description of the
Basis Language, but is intended to build enough of a foundation that you can later learn more
sophisticated features from the full reference manual. From now on, when we say Basis, we mean
the Basis Language, not the Basis System that the author used to buildfoo. When we saybasis,
we mean the program basis which you can use as a practice vehicle for learning the language, or
as a useful interactive calculator and plotter.

The Basis Language looks very much like Fortran, so if you know Fortran, you should be able to
pick up the elements very quickly. Unlike Fortran, though, Basis is an interpreted language, which
means that (usually) Basis statements are executed as soon as they are typed in. Basis contains a
lot of built-in functions, input-output facilities, and can interact with compiled code and variables.
You can even compute Basis’ input with Basis itself.

2.2 Starting the Program

If you are using basis by itself, you simply type in

basis

on the computer of your choice. You may be using some other code (Lasnex is an example) which
consists of Basis and a lot of other compiled code, in which case you may type in some other name.

Basis (or whatever) will initialize and when the process is complete, it will print out a prompt for
you. The usual default prompt is

5

Basis>

although this is one of the many customizable features of Basis that can be changed by the program
author. For sure, though, you will know when you are being prompted. Upon receiving the prompt,
you can immediately begin typing in Basis statements.

The default for a program built with the Basis System is that any arguments on the command line
are simply treated as the first line of input. However, this is one of those things an author may have
changed, so check your specific program’s documentation.

2.3 Getting Information

The key command for finding your way around a Basis program is theLIST command. Basis
commands such asLIST may be entered either in all lower case or all upper case. Sometimes we
will use upper case to emphasize that the word is a Basis reserved word, but usually people enter
them in lower case.

If you enter the command

list

you will get output something like the following:

list options

list [print the list options]
list par.Attributes
list [pkg.]functions
list Groupname
list [pkg.]groups
list idname
list macros
list packages
list [pkg.]variables
NOTE:Groupname is the name of a group in any package on the

current search stack.
NOTE:Groupname can be abbreviated.
NOTE:idname is the name of a function, macro, or variable in any

package on the current search stack.
NOTE:list groups, functions, and variables list local and user

created groups, functions and variables respectively
unless pkg. is utilized.

NOTE:list pkg.functions lists the built-in and compiled functions
in the database for that package.

6 Chapter 2. Getting Started

You can use theLIST command to get all sorts of information about Basis functions, predefined
macros, constants and variables, and the like. Enter:

list packages

and Basis will list the packages that are loaded. One of these ispar, the Basis parser package. Now
enter

list par.groups

and you will see a list of the groups that make up this package. Now you can enterLIST followed
by one of the group names (or a prefix of it) and you will see an explanatory list of the items in that
group. You can ask to have an individual item listed (such as a compiled or built-in function) to get
more information about that item (for instance, its parameters, what it does, what type it returns (if
any), and so on).

2.4 Comparison of Basis and Fortran

We summarize here very briefly the important similarities and differences between Basis and For-
tran. In each section of this manual we will summarize further similarities or differences pertinent
to the topic under discussion. For the real details you will need to go to the reference manual.

2.4.1 Major Similarities between Basis and Fortran

1. Basis has pretty much all of the Fortran operators and delimiters you are familiar with, and
they have the same functions and precedences. It has many more operators, but you won’t
need them when you’re getting started.

2. Basis expressions (including array references and function invocations) look just like they
do in Fortran.

3. Basis has all the data types available in Fortran (and more).

4. BasisIF statements look just like FortranIF statements.

5. BasisDOstatements are very similar to FortranDOstatements, but have no label and end in
anENDDOstatement.

2.4.2 Major Differences between Basis and Fortran

Mostly, Basis will do what an experienced Fortran programmer expects. The chief incompatibility
is in the form of the input. In general, Basis extends the ideas of Fortran to an array-syntax
interpretive environment.

2.4. Comparison of Basis and Fortran 7

1. Basis is interpreted rather than compiled.

2. Basis comments start with# and extend to the end of the line.

3. Basis has no statement numbers or goto’s.

4. Basis input is essentially free-form (columns are not significant). There is no continuation
column; a statement is continued from one line to the next by ending the line with
or a comma, open paren or bracket, or operator.

5. There are no default types in Basis; variables must be declared.

6. Basis function names and formal arguments must NOT be typed.

7. Basis functions may return virtually any kind of entity, including arrays.

8. Basis passes actual parameters to functions by value (i.e., as copies), not by reference (i.e.,
as addresses).

9. Several Basis statements can appear on the same line, if separated by semicolons(;).

10. Basis is case sensitive, that is, upper and lower case are distinguished. Basis reserved words
may be entered either in all caps or all lower case, though.

11. Spaces are significant in Basis (except in quoted strings and comments, of course), and act
as delimiters between tokens.

12. Double quotes are used for strings – single quotes are used for something else.

8 Chapter 2. Getting Started

CHAPTER

THREE

The Basis Language

3.1 Assignments and Expressions

One of the first things you are going to want to do is assign values to variables. These may be
variables which are already built into Basis, but could also be variables in compiled code which
the author has made available to the Basis. In a future chapter, we’ll show you how to declare your
own Basis variables, and then, of course, you can assign values to these as well. All variables to
which some quantity is assigned must have been declared previously, either by Basis, by you, or
by the program author.

Here are some examples of assignments. These are all assignments to variables which are prede-
clared in Basis. These examples are designed for you to follow along with on a terminal.

debug = yes
fuzz = 9
switches(2) = pi
switches(5) = 2.0 * cos (switches(2) / 3)

yesis a predefined constant in Basis (value 1), andpi is a predefined famous number.debugis
a predeclared variable which, if set toyes, toggles on more detailed debugging diagnostics. We
recommend ‘debug=yes ’ for beginners.fuzzcontrols the accuracy of real numbers printed out
by Basis (it is the number of digits after the decimal point).switchesis a predeclared real scratch
array which we have used here to show assignment to an array element. The last assignment
illustrates an arithmetic statement used in an assignment; its meaning should be obvious to any
user of Fortran.cos is only one of a very large number of built-in functions available in Basis.
All the usual ones are available; see the reference manual for complete details, or use theLIST
command to find out more.

For your convenience, Basis has predefined the following constants:yes = 1, no = 0, on = ”on” ,
off = ”off” , true = logical true, andfalse = logical false. In many casestrue andyes can be
used interchangeably, as canfalse andno .

If you want to print out the values of some of the above variables, simply type in a comma-delimited
list of their names, for example

9

fuzz , switches(2)

and Basis will print out the values (if real, to the number of digits specified byfuzz). In fact, you
can type in any expression or list of expressions, and Basis will compute it and print out its value
(if it can). For instance, try typing in

2.0 * cos (switches(2) / 3), x + y + 5

You should get an “Unknown variable” message from the second expression. When Basis en-
counters an error, it stops processing the current line, writes a diagnostic to the terminal and some
debugging information to a trace file (more ifdebugis yes, as mentioned above), and returns to the
prompt. It is now ready to accept further statements.

Try typing in some sort of declaration forx andy, such as

integer x , y

and then assign something to them, then type the expression again. This time you will get its
computed value. At this point, assuming you know Fortran, you should be able to type in various
Fortran-compatible declarations, expressions, and assignment statements, to get more of a feel for
Basis. Don’t worry about making mistakes; Basis is very tolerant of them and will come back
again and again.

You might also want to experiment with the predeclared Basis chameleon variables$a, $b, ... ,$z.
These variables exist in Basis but initially have no type or value; they get their types and values by
being assigned to, and this can be done again and again. They are thus called chameleons for the
obvious reason that they “change color” to “blend into their environment”, i.e., change type and
value to whatever is assigned to them. Try the following sequence of statements:

$b
$b = cos (pi / 3.0)
$b
$b = 6
$b

The first statement will cause an error because, although$b exists, it is undefined. The second
statement assigns$b a real value, which the third prints. The fourth assigns it an integer value,
which the fifth prints. You might want to experiment a bit with the chameleons before proceeding.

Basis allows logical variables and logical-valued expressions. As in Fortran, such expressions
would normally be used in anIF statement to control some execution choice. However, logical
values can be assigned too.

integer x, y, m
x = 3

10 Chapter 3. The Basis Language

y = 5
logical z
z = x > y
z

Basis will tell you that the value ofz is false . You can use either> or the more Fortran-like
.gt. for the comparison operator. If you do use.gt. make sure the periods are not ambiguous.
For example, ‘3.gt.y ’ is not going to work right but ‘3 .gt.y ’ is ok.

3.2 Input from a File

So far we’ve discussed input from the terminal, at the Basis prompt. Often, however, we input
statements from a file. If you have code in a file named ‘my funcs’ then you can have it read in and
interpreted by entering:

read my_funcs # no quotes necessary here

A file that you are reading in can itself containread commands, and so on, up to a depth of twenty.
If Basis detects an error in a file that it is reading in, it will close the file and give a diagnostic, then
return to the Basis prompt for input. Aresume statement will begin reading that file again at the
line that failed (assuming you snuck off and fixed it, and the line was at an appropriate place to
resume input).

You can execute commands using the Bourne shell from within Basis (like starting up your editor
in order to fix the input file) by beginning the line with an exclamation point:

!emacs my_funcs

You will return to Basis when the command exits.

3.3 Some Differences from Fortran

There is a lot more to Basis expressions than just imitating Fortran. Basis operators are more
general, and there are more of them.

1. Most Basis operators are more general than their Fortran counterparts. For instance, ‘* ’
and other arithmetic operators will perform component-wise operations on vector or array
arguments.

2. Basis has many additional operators such as matrix multiply and dot product; the operator
‘ // ’ which concatenates strings and arrays.

3.2. Input from a File 11

3. Unlike Fortran, the Basis logical and relational operators also have symbolic versions; for
instance ‘&’ for .and. ; ‘ ˜= ’ or ‘ <>’ for ‘ .ne. ’, and the like.

We’ll cover more of this as we proceed.

3.4 Declaring Variables

The examples in this chapter are designed to be executed as you read them. For brevity, variables
declared in an earlier example are frequently reused without redeclaring them in later examples.

The usual Fortran types are available for declaring variables, such as:

INTEGER x, y, z
REAL i, j, k = 2.0
DOUBLE d = 2.d0
COMPLEX c = 2.0 + 3.0i
LOGICAL l1 = true, l2 = false
CHARACTER*3 ch = "abc"

Note the following (mostly minor) differences from Fortran:

• Variables can be initialized in their declarations (ask , d, c , l1 , l2 , andch above). These
initialization expressions need not be just constants, but can be arbitrary expressions, as long
as all values in them are known when the statement is encountered. Even ‘real x=1,
y=x ’ is ok.

• The use ofDOUBLEalone, notDOUBLE PRECISION.

• The notation for imaginary constants (a numerical quantity followed byi , with no space
between).

• true andfalse without the surrounding periods as in Fortran.

• Variables which are not explicitly initialized are set to 0, or to blanks if they are of character
type.

Declare array variables of up to seven dimensions as follows:

REAL x(10), y(3,5), z(-3:5, 7:10)

The lowest value of the subscript range defaults to 1 unless a different value is specified before
a colon, as inz above. Thus,x is subscripted1 . . . 10, y from 1 . . . 3 and1 . . . 5, andz from
−3 . . . 5 and7 . . . 10. An individual array can be initialized by a vector of values that follows its
type declaration:

12 Chapter 3. The Basis Language

INTEGER i(10) = [0,0,0,0,0,1,1,1,1,1], j(5) = [1,2,3,4,5]

The vector components may be arbitrary expressions.

3.5 Some Elements of Array Syntax

Basis operators support arithmetic on arrays of arbitrary size and shape, except that binary op-
erations (* , / , etc.) require their operands to be compatible in size and shape; and assignments
require that the object being assigned must be storable as a subobject of the receiving item. For all
the details on this subject the reader is referred to the Basis reference manual.

Array operands can be expressed in various ways. An entire array is specified by its name without
subscripts: Thus, in the example above, eitheri or i() refers to the entire array of ten elements
as specified. One can also use subscript range notation to extract subarrays of a given array.

i(1:5) # will be the first five elements of i
i(2:10:2) # will be [i(2), i(4), i(6), i(8), i(10)]
i(3:5)+j(1:3) # will be [1,2,3]

A range specification consists of

low_dimension:high_dimension:step_size

step size , if omitted, defaults to 1. low dimension and high dimension must be
within the declared range, and if either is omitted, defaults to the declared value. Aside: These
numbers must be integers. The range notation with a real component means a vector of real num-
bers. Try entering

0.:1.:10 #vector of ten reals from 0. to 1.
0.:1.:.02 #From 0. to 1. in steps of .02

By contrast, if you enter0:10:2 you are printing out a range and such a range can be used as a
subscript.

You can apply the usual binary operators to objects of the same size and shape (regardless of
subscript values), and the operation will be applied to each component. The only exception to this
compatibility requirement is that scalars may participate in operations with arrays, in which case
the scalar is applied to each element of the array. For example,

i + 5 # adds 5 to each component of i

The same rules apply to arrays with more than one dimension. There is an additional rule applying
when subscripts are missing. A missing subscript will always default to its minimum value (as
declared), except when all are missing, which means the entire array. Examples:

3.5. Some Elements of Array Syntax 13

integer a(5,5)
a() # is the entire 5 by 5 array
a(5) # is just a(5,1)
a(1:5) # is [a(1,1),a(2,1),a(3,1),a(4,1),a(5,1)]
a(1:5) + j # valid operation since j is the same size and shape

3.6 IF Statements

BasisIF statements are exactly like Fortran, except that it is possible (and preferable, we think) to
use these comparison operators:

• > instead of.gt.

• >= instead of.ge.

• < instead of.lt.

• <= instead of.le.

• = or == instead of.eq.

• <> or ˜= instead of.ne.

• ˜ instead of.not.

The following will determine the maximum of two numbers:

if (x > y) then
m = x

else
m = y

endif

Unlike Fortran, you do not use variant forms of the comparison operators for non-numeric types.
Most Fortran programmers are blissfully unaware of.eqv. , but if you know about it, forget it.

3.7 Looping Constructs

Basis has several looping constructs. The most-used one is aDO/ENDDOstatement that is close to
the FortranDO.

Suppose, for example, thata, b, andc are alln by n square matrices, and that we want to put the
matrix product ofb andc into a. This could be done by the following:

14 Chapter 3. The Basis Language

integer i1, i2, i3, n = 5
integer a(n,n), b(n,n), c(n,n)
b = b + 1
c = c + 2 # setting values for b and c.
do i1 = 1 , n

do i2 = 1 , n
a(i1,i2) = 0
do i3 = 1 , n

a(i1,i2) = a(i1,i2) + b(i1,i3) * c(i3,i2)
enddo

enddo
enddo

The only real difference between this statement and the FortranDOis that Basis does not have state-
ment labels so the do-loops are delineated by theDO. . .ENDDOpair. Since there is no statement
number, none appears after the reserved wordDO. As in Fortran, an increment can be specified,
but if not, it defaults to 1.

3.8 Vector Syntax

We can greatly increase the speed of array calculations by using array syntax where possible. We
can rewrite the matrix multiply as:

do i1 = 1 , n
do i2 = 1 , n

a(i1,i2) = sum(b(i1,) * c(,i2))
enddo

enddo

or use the dot-product operator! :

do i1 = 1 , n
do i2 = 1 , n

a(i1,i2) = b(i1,) !c(,i2)
enddo

enddo

To really make it easy, use the matrix-multiply operator*! :

a = b *! c

3.8. Vector Syntax 15

Other matrix facilities includetranspose(a) , and concatenation (//). The latter operation
appends one array to the end of another, forming a one-dimensional object whose size is the total
number of elements of the two components. With the preceding declarations ofi andj, you might
want to try

i//j
i + j // j

to see what happens, and see if you understand why.

Square brackets are used for array building notation. Up to now, we have simply shown them used
for literal arrays, but you might want to experiment with them to see what they can do:

[[1,2],[3,4]] # The matrix
1 3
2 4

[j,j+1] # = [[1,2,3,4,5],[2,3,4,5,6]]
[j,2,3] # [1,2,3,4,5,2,3]
[[j,j+1],99] # [1,2,3,4,5,2,3,4,5,6,99]
[[j,j+1],[j-1]]# [[1,2,3,4,5],[2,3,4,5,6],[0,1,2,3,4]]

The final tool for building arrays is the:= assignment operator, which appends the right hand side
to the left hand size, thus changing its size. This is usually used to build up a list whose length is
not known in advance.

integer mylist(1:0) #empty integer list
integer k
do k = 1, 100

if(mod(k**2,6)==0) then
mylist := k

endif
enddo
mylist

prints the list of those integers between 1 and 100 whose squares are divisible by 6.

3.9 Differences between Basis and Fortran

1. Basis does not haveDIMENSIONor EQUIVALENCEstatements.

2. The BasisCHARACTERtype does not allow the syntax ‘character x*3 , y*19 ’.

3. Basis words such asINTEGER(and other type names),IF , DO, etc., are reserved words and
cannot be used as variable names.

16 Chapter 3. The Basis Language

4. Basis has additional types (RANGE, INDIRECT, andCHAMELEON), which are not available
in Fortran.

5. In Basis, a type can be prefaced with a scope, such as a package name. The most frequently
used of these isGLOBAL, as in ‘global real x ’. This declaration makesx a global vari-
able and thereforex will exist even after the return of the function in which this declaration
occurs.

6. Most Basis functions (e.g.,sqrt , sin ,cos , exp , etc.) will accept arrays as arguments,
perform the indicated function on components, and return an array of the results.

7. Basis has many more types of looping statements, such asDO... UNTIL , FOR(similar to the
C statement),WHILE... ENDWHILE, etc., described in more detail in the reference manual.

3.9. Differences between Basis and Fortran 17

18

CHAPTER

FOUR

Graphics

A Basis program may or may not have a graphics package attached. The standard package attached
to basisis calledezc . The current version ofezc uses NCAR graphics and is sometimes referred
to asezn to distinguish it from an earlier, non-NCAR, version.

The graphics devices available depend on those available in the graphical kernel system (GKS)
available at your site. At a minimum, this is NCAR’s GKS, which produces output files called
NCGM files, which can be processed by NCAR utilitiesctrans andidt . Another GKS is one made
by a company called ATC. The ATC-GKS has drivers for X-Windows, Postscript, Tektronics, and
CGM files. These CGM files can be converted to NCGM files using the NCAR utilitycgm2ncgm.

We will not attempt to reproduce the EZC manual here, but the following sample session may be
enough to get you going.

Before using a program containing EZN, make sure you have set the Basis Environment Variables
as described in the first chapter.

It assumes ATC-GKS and begins with turning on both CGM file output and an X-Window. It then
plots two curves on the same graph, advances the frame, and makes a contour plot. For the contour
plot, titles are added and the frame limits are controlled by the user.

abics[1] basis
Basis (basis, Version 931116)
Run at 10:55:17 on 11/22/93 on the sun4 machine, suffix 18021x
Initializing Basis System
Basis 9a
Initializing PFB Interface
PFB 1.0
Initializing 3-D Surface Plotting Routine
Initializing Device Package
EZD Graphics Devices 2.1
Initializing EZCURVE/NCAR Graphics
ezn /NCAR/ATC 4.2
Basis> real x=iota(100),y1=x**2,y2=x**2.1
Basis> real xx=iota(-5:5),yy=xx+6,zz=outer(xx,yy)
Basis> ezcshow=false #see below

19

Basis> cgm on
Beginning CGM File problem.001.cgm
Beginning CGM Log problem.001.cgmlog
Basis> win on
Basis> plot y1 x
Basis> plot y2 x color=red style=dashed
Basis> nf
Basis> frame -4. 4. 0. 10.
Basis> titles "Top" "Bottom" "Left" "Right"
Basis> plotz zz xx yy
Basis> end
Closed CGM File problem.001.cgm, 1 frames.
Closed CGM Log File problem.001.cgmlog

CPU (sec) SYS (sec)
2.733 3.000

abics[2] cgm2ncgm < problem.001.cgm > foo.ncgm
abics[3] ctrans -d ps.mono foo.ncgm | lpr

In the last two lines, the ATC-GKS CGM file was converted to an NCGM file, and thectrans utility
was used to send the picture to a monochrome postscript printer. To view the file in an X-Window
do

ctrans -d X11 foo.ncgm

A window will appear; click in it to see the next frame.

The ‘ezcshow=false ’ line causes the plots to not be displayed until all the objects have been
added to them and thenf (“new frame”) is executed. Without it three frames would have been
generated because the first one would have contained the plot ofy1and the second the plot of both
curves.

‘outer(xx,yy) ’ forms the outer product of the vectorsxx andyy, makingzza matrix.

Use theLIST command on theezc package to get more ideas about what you can control.

20 Chapter 4. Graphics

CHAPTER

FIVE

Text Input and Output

5.1 Stream Input

5.1.1 The >> Operator

This section explains how to read numbers in from a text file, which may contain numbers in
various formats as well as various non-numeric information which is to be skipped over.

The operator>> is called the “stream input” operator and it is inspired by the operator in the
languageC++. It has the basic form:

unit >> variable

where unit is an integer which has been set as the result of calling the function
basopen("filename","r") . The ‘r ’ stands for “read”. The functionbasclose(unit)
is used to close the input file when finished.

Suppose the input file ‘testdata’ looks like this:

c special input file
time = 2.56 , factor = 13.51e-2
1.2 2.3 3.4 4.5

Then here is some Basis code which would read in the numbers in this file:

integer i1 = basopen("testdata","r")
real x,y, d(2,2)
i1 >> x
i1 >> y
i1 >> d
call basclose(i1)

21

Then after the execution of the above sequence of instructions,x=2.56 ,y = .1351 , d(1,1)
= 1.2 , d(2,1) = 2.3 , d(1,2) = 3.4 , andd(2,2) = 4.5 . The remaining characters
in the file (the “noise”) will have been ignored. Note thatd appeared in the input list with no
subscripts (thus implying the entire array), and that it was read in in column major order (first
subscript varying most rapidly). Basis is like Fortran, which also stores its arrays in column major
order.

You should close the input file with:

call basclose (unit)

NOTE:Files opened bybasopen are automatically closed whenever an error occurs.

A series of stream input statements can be abbreviated by multiple stream input operators per
statement. The above is equivalent to:

i1 >> x >> y >> d

You may use the terminal as an input file (but don’t open or close it, please!) by usingstdin as
the unit number, or omitting the unit number.

5.1.2 Detecting end-of-file

It is the user’s responsibility to determine whether the end of a file has been reached. For this
reason an end-of-file flag (eof) has been provided.eof is an integer variable which contains the
valueno if the last read attempt was successful, andyes if the last read attempt was unsuccessful.
The user should use theeof variable when reading input. For example, this is how one could read
an array of unknown length (first create a file ‘numbs’ with some numbers in it):

real x(1:0), y # x starts empty
integer i1 = basopen("numbs", "r")
eof = no # making sure eof is no to start with
i1 >> y # read y
while (eof = no)

x := y # append y to x
i1 >> y

endwhile
call basclose(i1)

When the end of a file is encountered, the variables that cannot be assigned new values because of
lack of input retain their original values. Onceeof is yes for a specific file, the user should make
no further attempt to read input from that file.

eof always reflects the status of the last file read from. Test its status on a particular file before
you issue an input command for some other file, which may change its status.

22 Chapter 5. Text Input and Output

5.2 Stream Output

5.2.1 The << Operator

Stream output is very similar to stream input, which we studied in an earlier chapter. You open the
file for writing:

unit = basopen ("file" , "w")

You give one or more output commands, unit number first, then an expression, and as many more
operator-expression pairs as desired:

unit << fee << fie << fo << fum

Output expressions can be any legal Basis expression. Each output command will start on a new
line, but may or may not be more than one line long. When finished, close the file (Note this is the
same call to close an input file):

call basclose (unit)

You won’t get any spaces between the different parts of the output unless you put them there, as in

unit << "x is " << x << " and y is " << y

You may use the terminal as an output device (but please don’t open or close it!) by usingstdout
as the unit number, or by omitting the unit number. This makes it easy to make comments:

<< "Dear Sir, your run is proceeding quite nicely."

You may put stream output onto your current graphics devices by usingstdplot as a unit num-
ber; again, neither open or close stdplot. Many Basis users like to document their graphics files by
using stdplot to print the values of input parameters at the start of their graphics files. You can also
redirect most terminal output to the graphics files with

output graphics

with a subsequentoutput tty to restore terminal output.

5.2. Stream Output 23

5.2.2 Controlling Line Length

You can force a line break anywhere in the output by placing the reserved wordreturn between
any two output operators. You can cause the automatic line break after each output command to
be suppressed by setting the Basis variableautocr to no (its default value isyes). In this case,
Basis will fill an output buffer before it sends the output and a line break, unless there is areturn
somewhere along the way. (You, the user, can do nothing to alter the size of the Basis output
buffer.)

5.2.3 Formatting: format

Basis contains a built-in functionformat which takes a number and some integer parameters and
returns a character string. It can be used to produce output similar to Fortran formatted output.
However,format only accepts a scalar argument, so if you want to send out an array, it will have
to be in a loop where you send elements one at a time. To format an integer, use

format (<integer expression> , <field width>)

after an output operator. This function call returns the acsii character string for the integer expres-
sion, with exactly the number of characters asked for (right justified, if necessary), except that if
you specify 0, it will give you exactly as many as are necessary.

Theformat function does not accept complex numbers, by the way, so you would have to format
the real and imaginary parts separately; usefloat(c) andcmplx(c) to extract the real and
imaginary parts.

To format a real expression, use

format (<expression>,<field width>,<dec. places>,<EorF>)

after an output operator. The string returned by this call will have exactly the number of characters
specified by the width, unless you ask for 0, in which case it will give you only as many as are
necessary. The number will be right justified if necessary.<dec. places > tells how many
digits you want to the right of the decimal point. If<EorF > is 0, it will give a FortranE-type
format, and if it is 1, it will give a FortranF-type format.

24 Chapter 5. Text Input and Output

CHAPTER

SIX

Functions

6.1 Defining Functions

Now we’ll learn how to define functions in Basis. When a function is defined, it is compiled into
an internal form and stored. The function will then be executed if the function is invoked in a Basis
expression.

In this section, we will look at examples of functions. By the time you finish this tutorial, you
should be able to write many useful functions.

The following function computes the absolute value of the difference of its arguments.

FUNCTION adiff(x,y)
return abs(x-y)
ENDF

To try it, enteradiff(-5.,5) . Then tryadiff([1,2],[9,2]) .

list adiff

displays the information that Basis has stored about this function; if you answer “y ” to the “Dump
intermediate code? ” question, you will get a hint of what the internal code of this function
looks like.

Here are some notes about the functionadiff :

1. Note that neither the function nor its formal parameters is typed. This is what permitsadiff
to return different types and shapes of results depending on the input.

2. In Basis, a value is returned from a function by using theRETURNstatement followed by a
value (similar to C),not by assigning a value to the function name (as Fortran would do it).

3. The function ends with reserved wordENDF, not END. The reserved wordEND, in Basis,
causes Basis to terminate. It can not be legally used in any other context.

25

You can declare local variables inside functions, which will not exist after they return.

function diff(x)
return first differences of x
chameleon z=shape(x,length(x))
return z(2:)-z(1:length(z)-1)
endf

Note the use of the chameleon type; this meansdiff works properly whetherx is integer, real,
double, or complex. The shape function makes surez is a vector whose lowest index is 1 so that
we can subscript it correctly in the following line.

6.2 Arguments Passed by Value

Basis passes a copy of each argument to the function (“pass by value”) while Fortran passes the
address of the argument (“pass by reference”). Thus a Fortran function which assigns a value to
one of its arguments will cause a change in the value of the actual argument, while this will not
occur in Basis, since only a copy is altered.

When you call a Fortran function from Basis, and the function changes one of its arguments, you
must tell Basis to pass an argument by address by prefixing the name of the argument with an
ampersand:

real x
call second(&x)

Here,second is a compiled function which returns the time used in its argument.

There are very few cases where it is necessary to have a Basis Language function change an
argument, because a function can return an entire array as its value, if necessary. However, Basis
has anINDIRECT type that allows you to pass the name of the argument and then operate on that
in the function:

FUNCTION w(namex)
INDIRECT y=namex
y(3) = 7.
ENDF
REAL x(100)
call w("x")

will result in x(3) being set to 7. By contrast,

26 Chapter 6. Functions

FUNCTION w(y)
y(3) = 7. #THIS IS USELESS
ENDF
REAL x(100)
call w(x)

does NOT modifyx ; rather, a copy ofx has been modified, and then discarded whenw returned.

In other words, the name of an argument whose value is to be changed should be passed to the
function as a character string. Within the function, a local variable is declaredINDIRECT and
initialized to the name of the formal parameter to be changed. Then assignment to theINDIRECT
variable will result in changing the actual argument in the calling routine.

6.3 Further Differences with Fortran

1. Basis does not have theSUBROUTINEdeclaration; a Basis function can return a value or
not.

2. COMMONvariables do not exist in Basis.

3. Globally accessible variables can be declared inside a Basis function (by prefacing their
declaration by the additional reserved wordGLOBAL). A global variable, that is, one declared
outside of any function, is visible from any function. A local variable declared in a function
is visible only within that function, where it hides a global variable of the same name.

6.3. Further Differences with Fortran 27

28

CHAPTER

SEVEN

Built-in and Compiled Functions

There are three types of functions in Basis. The first, Basis language functions, are also called
“user” functions. The other kinds are “built-in” and “compiled.” Built-in functions are a special
form of compiled function, either supplied as part of the Basis parser itself likecos or iota or
sqrt , or written by a particularly Basis-skilled code developer. Compiled functions are ordinary
Fortran routines whose calling sequence has been “taught” to the Basis interpreter.

Built-ins are usually used when it is desired to accept different kinds of Basis objects as arguments
and return whatever type of object is appropriate. For example, many numerical-valued built-in
functions will accept an arbitrary array of numbers and return an array of the same type, size and
shape, whose entries were obtained by applying the function to each entry in the original array.
Many of the most useful functions described below are designed to operate specifically on arrays.

For information on any individual function you can useLIST followed by the name of the partic-
ular function. In addition to giving you more information about what the function does, the output
will also tell you what (if anything) the function returns, how many arguments it has, what their
types are, etc. The Basis reference document also has more complete information. We discuss
some of the more useful built-in and compiled functions in the following sections.

The sizeor lengthof an array is its total number of elements. Theshapeof an array is a vector
whose components tell how many values the respective subscripts of the array can take on.

In Basis arithmetic, arrays must be of the same size and shape to participate in componentwise
binary operations such as+, - , * , and/ . The only exception is that one operand can be an array
and the other a scalar, in which case the scalar isbroadcast, which means that the operation is
applied to the scalar versus every element of the array. Another way of thinking of it is that the
scalar is expanded into an array of the same size and shape as the other operand, each element of
which has the original scalar value.

Most functions which accept array arguments will also accept scalar arguments along with arrays,
in which case they broadcast the scalars as described above.

Some of the functions below which accept array arguments don’t care about shape, but only size.
In this case they operate on corresponding components of their respective arguments, but you need
to know what “corresponding components” are when the subscripts have different ranges. This is
done in a fairly natural way: arrays in Basis, as Fortran, are stored in column major order (i.e., the
first subscript varies most rapidly as we go through the array in memory). The elements of two

29

arrays of different shape but the same size are said tocorrespondif they occupy the same relative
position in this memory hierarchy.

When a function is called with an argument of the wrong type, or an expression involves mixed
numerical types, Basis will perform automatic type coercion if necessary. For example,

3+4.

results in the “3” being converted to “3.0” before the addition operation, and iff(x) is a compiled
function expecting a real argumentx , then

f(3)

actually results in

f(3.0)

In an array of numerical constants of mixed types, its elements will be coerced to the highest type
in the hierarchy integer→ real→ double→ complex.

Likewise, most built-in functions try to do the right thing. For example,sqrt(2) means
sqrt(2.0) .

Doubles are coerced to reals, and thence to integers, by truncation. Logicaltrue converts to and
from integer 1, and logicalfalse converts to and from integer 0.

7.1 max and min Versus sup and inf

The functionsmax andmin accept any number of arguments. If all arguments are scalar, then the
result is the largest (resp. smallest) scalar in the list. If any argument is an array, then all other
arguments must be either scalar or arrays with the same number of elements (but not necessarily
the same shape). The scalar arguments, if any, will be expanded to vectors of this same length,
with all entries equal to the scalar. Then the maximum (or minimum) will be taken component-by-
component and returned as an array. The shape of this array will be the same as the shape of the
first of the original arguments that was not a scalar.

In contrast, the functionssup and inf accept any number of arguments (even a single one), either
scalar or array, of arbitrary size and shape, and return the scalar value of the largest (resp. smallest)
component of all the arguments. Thus these functions always return a scalar;max andmin will
return an array if they have any argument which is an array.

A max or min of a single argument is treated as asup or inf , since that is what you probably
meant.

30 Chapter 7. Built-in and Compiled Functions

7.2 iota and spanl

The functioniota is particularly handy if you wish to graph a function at an equally spaced set
of points.

iota(n)

will give you a vector whose components are1, 2, 3, ... ,n.

iota(m,n) #or iota(m:n)

will give you a vector whose components arem, m1+, m2+, ... ,n. Thus, for example, you can get
a vector of all the points a tenth of a unit apart in the unit interval[0,1] , and the corresponding
values of a functionf , by writing

real x = 0.1 * iota (0 , 10) , y = f (x)

Note that in Basis you need not specify the dimension of a variable that is initialized with a vector
or array when it is declared. It will be automatically dimensioned properly (with all subscripts
based at 1). Note thatreal x = 0.:1.:.1 would have accomplished the same result, as
would real x = 0.:1.:11 .

The functionspanl is used to obtain a vector of points which arelogarithmicallyspaced between
two given points, rather than linearly spaced as one would obtain withiota . To get the eleven
logarithmically spaced points in the interval[0,1] use

spanl (0., 1., 11)

The first two arguments are the endpoints of the interval, and the third is the total number of points
desired.

7.3 Information about Arrays: length, shape

Arrays are ubiquitous in Basis. Subscripting can be bizarre and shapes can change. These two
functions allow you to obtain information about the size and shapes of arrays; theshape function
also allows you to arrange the elements of an array into a different shape. This can be especially
useful inside a function, where you may have been sent a perfectly arbitrary array as a parameter
and you need to determine information about it.

7.2. iota and spanl 31

7.3.1 The Function length

To find the size of (total number of elements in) an array, takes itslength :

real a (3, 8 , 7) , b (5 , 5)
function howbig (x)
remark length (x)
endf
call howbig (a)
call howbig (b)

will print out 168 and then 25. (remark is a Basis macro which simply prints out the value of its
argument at the terminal.) Do not confuselength with strlen , which counts the number of
characters in a character string.

7.3.2 The Function shape

The “shape” of an array is defined to be a vector containing the span of its subscripts as its compo-
nents. The span of a subscript is the total number of values which it can assume, which if its upper
bound ishi and its lower bound islo , is given byhi - lo 1+. The functionshape can do
two distinct things for you; the first one is that if you send it a single argument, it will return you
the shape vector for that argument. For example, with the abovex , the value ofshape(x) would
be[4,6,9,4] .

The functionshape also can be used to take a given array and change it to an array with a different
shape. In this case we need to send it the shape vector of the result, as a second argument (or send
the components of the shape vector as additional scalar arguments). For example,

shape (iota(64) , [4 , 4 , 4])
#or shape(iota(64),4,4,4)

will return a 4 by 4 by 4 array whose components in column major order are the numbers
1, 2, 3, ..., 64. Why might one want to change the shape of an array? Well, one application that
comes to mind is that you might want to add two arrays together componentwise, and they are the
same length, so it ought to be possible. Unfortunately Basis will not allow you to perform binary
operations on objects of different shapes. So you need to coerce one of the objects to the same
shape as the other. For instance, supposea is a 5 by 5 array andb is a 25 element vector, and we
wish to addb to a componentwise, and leave the result ina. We could do this as follows:

a = a + shape (b , 5 , 5)

The shape of b is not permanently changed by this operation.

The shape function can also replicate an array to fill up a larger shape:

32 Chapter 7. Built-in and Compiled Functions

shape([1,2], 2, 3) = [[1,2],[1,2], [1,2]]

and

shape(1., shape(a))

is an array of 1.’s shaped likea.

7.4 Summing Arrays: sum

The functionsum allows you to add up the elements of an array without having to write a loop to
do it. It takes one or two arguments; in the one-argument case,

sum (x)

all the elements of arrayx will be added, and the scalar sum returned. ifx is a scalar,x will be
returned.

In the two-argument case, the second argument specifies a subscript of the first; the result will be
an array containing the sums of the elements of the original over all values of that subscript. Thus
the result array will be one dimension smaller than the original, but the same shape in the other
dimensions. For instance, ifx has shape[12,8,90,10] , then

sum (x , 3)

will sum x over the third subscript and produce a result having shape[12,8,10] . That is,
sum(x, 3, y)(i, j, l) is the sum ofx(i, j, k, l) over allk .

Likewise, if y were a two-dimensional array (i.e., a matrix), then

sum (y , 2)

would produce a vector whose components were the sums of the corresponding rows of matrixy .

If you like sum, you might also like its cousinpsum (partial sum) which is good for integrating
things.

7.5 Vector Conditionals with where

where (cond , x , y)

7.4. Summing Arrays: sum 33

The first argumentcond must be of logical type and the second and third,x andy , must be of
numerical type. The length ofcond must be matched by that ofx andy , although one of them
can be a scalar and the other an array. The array returned consists of an array the same length as
cond with components equal to the corresponding component ofx for those elements ofcond
which are true, and the corresponding element ofy wherecond is false.

where also has a two-argument form which returns just those elements ofx for which cond is
true (a “compress”).

where (a > b , a , b)

is equivalent tomax(a,b) becausea > b is anarray of logicals of the same size and shape
whosecomponentsaretrue or false according as thecorresponding componentsof a are or
are not greater than those ofb. Thuswhere will now return an array whose components are the
larger of the components ofa andb. You could do the same thing withmax; but the point here is
that the logical condition could be a great deal more complex. In other words,where allows you
to build much more general functions thanmax andmin , although only on two arguments.

34 Chapter 7. Built-in and Compiled Functions

CHAPTER

EIGHT

Commands

8.1 The Basis Command Capability

Frequently when you are using Basis with a simulation code of some sort, the author will have
written a number of commands which you will be using. In Basis, a command looks much like a
command line in some operating system: the name of the command, followed by a list of arguments
separated from one another somehow (usually by spaces or commas, but not always). A number
of questions commonly arise with commands, in particular:

• What are the types of the arguments? (Specifically, some may be expressions to be com-
puted, and others may be strings to be taken literally. Which are which?)

• What delimiters are allowed or required? (Clearly, if spaces are delimiters, then “3 +4 ” is
two arguments, whereas if they are not, then it is one argument.)

Let’s consider a little background first. Basis has a built in command capability that allows any
function to be invoked by a command-line type of syntax. Consider, for example, a function
defined as in a previous chapter:

FUNCTION w(namex)
INDIRECT y=namex
y(3) = 7.
ENDF

Using the regular Fortran-like Basis syntax, this function is invoked by thecall statement:

call w("x")

Basis has a reserved word “command” which allows any function to be invoked by a command
line syntax. In this example,wwould be invoked by the statement

w command "x"

35

That is, we give the function name, the reserved wordcommand, and then a list of the function’s
arguments. If there is more than one parameter on this list, the list may be delimited by either
commas or spaces. (If this seems an arcane way to call a function, just remember that virtually
all operating system commands have essentially this form: name of command followed by list of
arguments.)

Using this command syntax, the arguments are all evaluated as expressions, and the default delim-
iters are spaces and/or commas. For example, in the command line

foo command "This is a string" 756 , , (912 + y)

the functionfoo is being called with four arguments:

• the character string"This is a string"

• the numerical value756

• a null argument (between the two commas)

• the expression(912 + y)

The first two arguments are delimited by a space; the remaining ones are delimited by commas
(spaces on either side of the commas do not count as delimiters when commas are present).

NOTE: Spaces outside parentheses act as argument separators; spaces inside do not.

It is important to emphasize that all of the arguments ofcommandare taken to be expressions (in
the above case, string-valued, numerical-valued, null-valued, and numerical-valued, respectively).
Commas and spaces are taken to be delimiters (though not in combination—spaces around commas
are ignored). Character string expressions must be quoted. If we had written

foo command This is a string 756 , , (912 + y)

then all of a sudden we would have seven arguments, andThis , is , a, andstring would be
taken as identifiers to be evaluated.

The command capability allows the author to change these defaults. The author may specify
different delimiters, either for the entire command or just between certain arguments; and can
specify that some arguments be treated as if they were quoted strings, even if the quotes are not
physically present. The details of this are covered in Chapter 10, “Deciphering Commands”. This
is done by suffixing an underscore “” to “ command” and then a sequence of letters specifying
delimiters and argument types. Here is what we could do in the above case:

foo command_wSe This is a string , 756 , , (912 + y)

36 Chapter 8. Commands

Immediately following the underscore is the lower case “w”, which suppresses white space as a
default delimiter. Thus only commas are valid delimiters in what follows. The upper case “S”
specifies that the first argument (everything up to the first comma) is to be taken as a string, i.e.,
to be treated exactly as if it were quoted. The lower case “e” specifies that the second (and all
remaining) arguments are to be expressions. Notice that since white space has been suppressed as
a delimiter, parentheses are no longer necessary in the last expression.

What the author does to hide all of this from you is to define the command to be a macro which
expands into thefoo command wSe. You can see what a command name really stands for by
using the (you guessed it)LIST command.

In the chapter “Deciphering Commands” we go into more detail on this subject.

8.1. The Basis Command Capability 37

38

CHAPTER

NINE

Saving and Restoring Code and Data in
Binary

9.1 The PFB Package

The PFB package can save and restore data, functions, and macros in binary form. The PFB
package is not a required component of a Basis program; use ‘list packages ’ to see if it is
present. (Note for when you start writing your own programs: PFB can be added to a program you
make with Basis by adding the name pfb to the directory list input formmm.)

Basically the process has three steps.

1. Create an output file:

create myfile # or whatever

2. Enter one or morewrite commands, which can take the following forms:

write <namelist> # saves all the items named

There are the following special forms of this command:

write functions # saves all user-defined Basis functions
write macros # saves all currently defined macros
write variables # saves all user-defined variables
write all # save functions, macros, and variables

3. When finished, close the file:close .

The data is stored in a portable database format named PDB. The files can be moved to
another computer and used there even if the new computer has a different data format.

39

9.2 Reading in Previously Saved Data

To read in all of the data you wrote do:

restore myfile # reads all data from file myfile

To examine the data in the file without bringing it into your program permanently, you can use the
open command:

real(8) x=3., y=4., z=5.
create myfile
write x,y,z
close
forget x,y,z #x,y,z gone now
open myfile
x, y, z #prints x,y,z in file
real(8) x=pfb.x #copy in just x
close

(You cannot assign to the variables in a file you haveopened , you can only read the values).

See the manual page for PFB for fancier uses, such as comparing items from different files.

40 Chapter 9. Saving and Restoring Code and Data in Binary

CHAPTER

TEN

Error Recovery and Diagnosis

10.1 Error Recovery

When an error occurs, it can be an error which Basis detects (such as trying to add a complex
number and a character string) or one which is detected outside of Basis (such an floating point
overflow). All errors detected by Basis result in a call to the routinekaboom. Whichever other
errors a particular version of Basis can trap are trapped to a routine calledyuck which in turn calls
kaboom. This is why you may see a message ‘yuck: floating point error ’ followed
by messages about recovering to the prompt. Very rare but serious errors may cause an immediate
program exit viabaderr , and some system errors cannot be trapped, and exit without allowing
Basis to regain control.

Assuming you reachkaboom, it either returns you to the prompt or causes the program to termi-
nate. By default it returns you to the prompt. A routineerrortrp is provided which can change
this behaviour:

• errortrp("on") causeskaboom to recover to the prompt.

• errortrp("off") causeskaboom to terminate the program.

When an error occurs a trace file is written containing diagnostic information. To help you with a
problem, the Basis staff needs to know what messages exactly were printed on the terminal when
the error occurred, and what information is in the trace file.

To increase the information you get when an error occurs, we recommend setting

debug = yes

at the beginning of your session. If the trace files just annoy you no end, you can set
bastrace="none" to eliminate them but this will make it hard for us to help you.

10.2 Syntactic and Semantic Errors

There are two kinds of errors that Basis can find.

41

• Syntaxerrors occur during the parsing of input code, and are caused by grammatically incor-
rect statements. Typical errors might be an illegal character in the input, a missing operator,
two operators in a row, two statements on the same line with no intervening semicolon,
unbalanced parentheses, a misplaced reserved word, etc.

• Semanticerrors occur during the execution of the code, after it has been parsed as grammat-
ically correct. These have to do not with how statements are constructed, but with what they
mean. Such things as incorrect variable types or sizes, nonexistent variables, subscripts out
of range, and the like, are semantic errors.

Basis is a single-pass parser, that is, it looks at its input only once. It also is a one-look ahead parser,
meaning that at the most it is never looking more than one symbol ahead of the current context.
By the time a syntax error has been detected, it is likely that a lot of the context information to the
left of the error has already been lost. The diagnostic information that Basis gives attempts to be
as useful as possible, but because of the very limited context information available, it is far from
perfect.

Semantic errors are often possible to diagnose more precisely. We have attempted to make the
semantic error information supplied as useful as possible. Sometimes some of the information is
only useful to someone familiar with the internals of Basis; but we hope that in most cases it will
help you find your error.

10.2.1 Syntax Errors

Here is an example of a statement containing a syntax error:

sum (where (a > v , ones (length (a)) , 0)

Let’s take a look at what Basis prints out as a result of this error:

sum (where (a > v , ones (length (a)) , 0)
ˆ Syntax error.

Attempting to parse after following context:
<lhs> (<argitem>
which may not be followed by "cr" in this context.
Count of parentheses unbalanced: left = right + 1.
Expected one of the following (?):

) ,
Returned to user input level.

When the parser echoes the line being parsed, with “Syntax error ” underneath the line, the
caret points to where the error was detected, not necessarily to where it occurred. In this case, the
caret points past the end of the line, a clue that something is missing. The information about the
parsing context is useful only to a Basis expert, but the statement that it can not be followed by

42 Chapter 10. Error Recovery and Diagnosis

"cr" (carriage return) is useful. That seems to say that the line is too short and reinforces our
suspicion that something is missing. The next line points out that so far in the line there have been
more left parentheses than right, and the next two lines confirm that maybe the parser expected a
right parenthesis or a comma. The expression was missing a right parenthesis.

The list of expected symbols (as opposed to the one which actually occurred) is not 100% accurate.
It may not contain all possible symbols which could occur in the given context; or worse yet, it
could be such a long list as to be virtually unusable. In the above case it did contain the missing
symbol, and it was not needlessly long. Below is a case where the list supplied by the parser is too
extensive to be much help:

function f(x)
if (x > 0) then return 0
return 1
endf

The diagnostic produced by this error is:

endf
ˆ Syntax error.

Attempting to parse after following context:
function <funcdes> <eos> <stlist> if <ifexp> then <stlist>
which may not be followed by "endf" in this context.
Expected one of the following (?):

(+ - : << >> ? Groupname [ˆ ‘ break call chameleon character
complex complex-constant cr do double double-complex-constant
double-constant else elseif endif for forget function
hex-constant if indirect integer integer-constant list logical
name next octal-constant range read real real-constant return
string while whitespace \{ Returned to user input level.

What has happened here is a relatively common error—the programmer has not completed anIF
statement. AnENDIF or ELSEclause has been omitted. Deeply buried in the list of “expected”
symbols you will find these two reserved words, and alsoELSEIF . It is possible to imagine a
meaningful continuation of the program starting with any of the other symbols in the list, but the
length of the list quite effectively hides the real clues in its depth. Unfortunately, a one-pass, no-
backtracking parser with a one token lookahead can not apprehend the entire surrounding context
as a human can; it only knows what symbols might, in some circumstances, lead to a correct
statement if placed in the current position.

This example also hints at another problem with syntax errors: they may be discovered long after
the actual error occurred. In this case, if an

ENDIF was intended prior to thereturn 1 statement, the error was not detected until theENDF
was seen, after that statement had been consumed. There could equally well have been a hundred
statements parsed before theENDFcaused the parser to detect the error. Thus our advice is that

10.2. Syntactic and Semantic Errors 43

if you have trouble tracking down a syntax error, don’t confine your search to the immediate
neighborhood where it was detected. It could have been many lines previous.

10.2.2 Semantic Errors

Many times the Basis diagnostics for semantic errors make it very easy to discover what was
wrong. For example, the statement

b = c + a

produces the following diagnostic (whendebug is yes):

parasgn2: Shape mismatch between source and target in
assignment or append.
Right side (source) true dimension= 2 true shape= 10 10
Left side (target) true dimension= 0 true shape=
parasgn: error in assignment to variable named ’b’.
Writing traceback info to file trace24589x
Returned to user input level.

Clearly the problem is that the right side is a 10 by 10 array, and the left sideb is a scalar, so this
is an illegal assignment.

Sometimes the traceback information can be useful; if you examine the traceback file (in this case
trace24589x), you will find that it contains

Here is the information I have on where you were:
The error occurred in the assignment or append statement:
b = expression
The following lines contain clues(not facts) about the r. h. s.
c+a
Parser’s action number = 3(ASSIGN), program counter = 26.

Frequently a semantic error will be detected inside a function, or perhaps nested inside several
function calls. The error printout may concern a variable or parameter local to the function where
execution is taking place, and the name of the variable seems totally off the wall. For instance,
consider the declaration and function call:

integer z (2 , 4 , 5)
call f (z)

This function call produced the following error diagnostic:

44 Chapter 10. Error Recovery and Diagnosis

parfetch: trouble with object named ’barf’.
expression being subscripted has 4 subscripts but variable
only has 3 dimensions.
Writing traceback info to file trace24589x
Returned to user input level.

Where did the object named “barf ” come from? Clearly it has three dimensions but four sub-
scripts, but we can scarcely correct the error until we know where it was. In this case, the traceback
file proves invaluable. It contains (in part):

Here is the information I have on where you were:
A call to f containing
A call to brf containing
A call to arf containing
the problem.

Error occurred in non-assignment statement.
The following lines contain clues to the error.
Some or all may be irrelevant to your problem.
1
barf
crf
crf
arf(crf)
arf(crf)
brf(x)
z
f(z)
Parser’s action number = 374(OUTPUT), program counter = 50.
Group: Locals_arf Num Vars: 1
barf(2,4,5)
Number of dimensions is 3, lengths = 2 4 5
some information skipped here
Group: Locals_brf Num Vars: 1
crf(2,4,5)
Number of dimensions is 3, lengths = 2 4 5
some information skipped here
Group: Locals_f Num Vars: 1
x(2,4,5)
Number of dimensions is 3, lengths = 2 4 5
some information skipped here

The functionf , which we called, has called functionbrf , which calledarf , where the error
actually occurred. So the variablebarf , which caused the trouble, is local to the innermost
functionarf , as we find out farther down the traceback. Finally, our variablez , andf ’s variable

10.2. Syntactic and Semantic Errors 45

x , andbrf ’s variablecrf , and finallyarf ’s variablebarf , all have the same dimensions. It
must be that these are the names of these functions’ formal parameters;z has been passed down
as a parameter all the way to a routine which expected a variable with four dimensions. Either we
declaredz wrong, or misunderstood what number of dimensions it was supposed to have, or else
there is an error inarf which needs to be corrected.

Error diagnosis is (usually) a fairly straightforward problem, and we hope that these examples have
helped illustrate how to diagnose and correct bugs. Our final advice is:

• Setdebug to yes to get the maximum information.

• If the terminal output is not adequate to locate the bug, use the traceback file. (You can see
its contents by typing

!more tracefilename # name is given in diagnostic

at the basis prompt.)

• Please be patient and actually read the error messages and trace files. We find many users do
not do this. Errors, especially when you are busy, can generate strong emotions. If we knew
how to generate one-line messages that exactly described every error, we would. We need to
put out a lot of information to help people find difficult bugs; this means that often a lot of
information is put out about a simple bug. We have tried to recognize this problem and put
the more elaborate information in the trace file, so that it isn’t read except in more difficult
cases.

46 Chapter 10. Error Recovery and Diagnosis

CHAPTER

ELEVEN

Deciphering Commands

This chapter continues the discussion of commands. We do not recommend reading this chapter
on a first reading of this manual. Or a second. Come here when you have a real problem with a
command.

Commands defined by the author of a code are defined as macros. You need not know how to write
a macro yourself in order to understand one somebody else wrote. A macro definition associates a
name with a body of text, and this text is substituted for the macro name whenever it is encountered
in the input stream. Macros may have arguments, in which case the arguments are expanded where
they occur in the macro text. Thus a macro invocation can look just like a function call.

There are a few exceptions to macro expansion:

1. Text inside quoted strings is never expanded.

2. Macro expansion in an expression can be suppressed by enclosing the expression in braces
{ and}. (The braces are otherwise ignored by Basis.)

3. Macro expansion in a command argument can be suppressed by expressing its type with an
upper case letter (in the preceding example, “S” as opposed to “e”). More about this later.

Enter this and see what happens:

list pi
pi
{pi}

the LIST command causes the macro definition ofpi to be displayed. The second line will cause
a funny display something like

3.14159265358979323 = 3.14159D+00

Left of the= sign is the text that was actually substituted forpi . Right of the= sign is the value
of this, to the number of digits specified by the built-in variablefuzz . The third line causes an

47

error because if we suppress the macro expansion ofpi by enclosing it in braces, it then becomes
an unknown symbol.

What does all this have to do with deciphering somebody’s command? Well, suppose you are
running somebody’s simulation code with the Basis interface, and there is a certain command you
want to use, and you are unsure what the arguments are supposed to be or how they are supposed
to be delimited. Typically this individual will have defined this command as a macro, so the first
thing you need to do is to track down the text of this macro. This is not hard to do; simply type in

list commandname

Basis has a commandtimer which is used astimer on andtimer off . The text fortimer
is:

partime command_s

This means thattimer calls a function named “partime .” The “command s ” specifies (via the
“ s ”) that it accepts at least one argument and that the argument will be an unquoted string with
macro expansion enabled. “s ” and “S” both express that an unquoted string argument is expected;
upper case causes macro expansion in the argument to be suppressed. We don’t know from the
definition how many arguments the macro (or function) expects; but they will all be unquoted
strings, if there are more than one—this is governed by the last letter in the specification (and here,
the only letter, “s ”). There are no delimiter specifications in this command, so white space and
commas will be accepted. By the way, string arguments can be quoted, if you wish; they just don’t
have to be—unlessthey are to contain symbols that would be recognized as delimiters.

Argument specifiers can bes or S for strings (with and without macro expansion), ande or E for
expressions (again, with and without macro expansion, butE is hardly ever used). You can specify
a type for every argument by having a string of these characters, one per argument; but if, as is often
the case, all the arguments from some point on are the same type, then Basis will keep using the
last character in the string of specifiers. Thuscommand se is the same ascommand seeee
Parentheses are used to specify repetition of more than one type, e. g.,command e(Se) is the
same ascommand eSeSeSe... .

Delimiter specifiers may be included in the specification string. If they are at the very beginning of
the string then they determine the default delimiters for all arguments. If they occur between argu-
ment specifiers, they express what delimiter(s) would be valid just between those two arguments.
Delimiter specifiers arew/W (suppress/enable white space),c/C (suppress/enable comma)a/A
(suppress/enable at sign), andq/Q (suppress/enable equal sign). As has been previously men-
tioned, if no delimiters are specified then the default is “WCaq”, i.e., white space and comma
enabled, at sign and equal sign disabled.

Let us look at a few more examples from among the Basis predefined macros. Here is the expansion
for tek in theezn graphics package:

ezcdodev command_S(ScQS) tek $1

48 Chapter 11. Deciphering Commands

This calls a function namedezcdodev . The first argument is a string with no macro expansion
(since this is the string “tek ” itself, it is clear that we do not want to expand it in its own expan-
sion). Subsequent arguments (if any) occur as pairs of strings with no macro expansion; the two
arguments in a pair can be separated by equal signs or white space, but not commas (the “cQ”
specification disables commas, enables equals, and does not change white space, which is enabled
by default). Pairs are separated from other pairs by the default, white space or commas, because
the “cQ” specification occurs only between the elements of a pair. The “$1” notation stands for
the first argument of the macro call. (A macro may be defined with arguments, just like a function,
in which case, when an invocation of the macro is expanded,$1 will be replaced by the text of the
first actual argument.)

Here is the macro text forcgm:

ezcdodev command_SSc(SwcS) cgm $1

this calls the same function, but the arguments and delimiters are specified differently. All argu-
ments are strings with no macro expansion. The first two are separated by white space or comma
(the default), and the second is separated from the third by white space only (“c ” suppresses
comma). Subsequent arguments, it would appear, occur in pairs with white space or commas be-
tween the pairs, but the puzzling “wc” seems to say that the two strings of a pair have no delimiters
between them at all! On first glance this seems to make no sense; but in fact, the effect of this is to
concatenate the entire rest of the line into a single string and never find a fourth argument. Thus,
in fact, this specification is really the same as

ezcdodev command_SScSwc cgm $1

since no fourth argument will ever be collected; there is no delimiter possible to set it off from the
third.

The following is the expansion ofplotm :

ezcplotm command_(eWCQ)

All the arguments of this command will be expressions with macro expansion enabled, and the
delimiters will be white space, commas, and equal symbols.

Finally, here isresume :

osresume command_es $1 $2

This calls the functionosresume with the macro’s first two arguments ($1 and$2), the first of
which is an expression, and the second of which is a string, with macro expansion enabled in both.
The delimiters are default.

49

50

INDEX

Symbols
! or dot product .11, 15
!= .16, 22
< or .lt. .14
<= or .le. .14
<< .23
<> or ˜= or .ne. .12, 14
> or .gt.11, 14, 34, 42, 43
>= or .ge. .14
>> .21, 22
* .9–11, 13, 15, 29, 31
*! or matrix multiply15, 16
+10, 12–16, 20, 29, 30, 32
- .16, 25, 26, 29
/ .29
// or concatenation11, 16
; .8
= .9–12, 15, 16, 20–23, 26, 31–33, 35, 40, 41
= or == or .eq. .14, 16
[] .16
& or .and. .12
˜or .not. .14

A
abs .25
array .15
array declaration .12
arrays .13
assignment operator .16
ATC-GKS .19, 20
autocr .24

B
baderr;Error Recovery

baderr .41

Basis
data types. .2
documentation .2
overview .1
parser .2

Basis and Fortran differences7, 11, 12, 16, 27
Basis and Fortran similarities7
Basis data types .12
Basis description .5
basopen .21
bastrace;Error Recovery

bastrace .41
braces. .47
Built-in Functions5, 7, 29, 30

inf;inf .30, 34
max;max.26, 29–32, 34, 42
min;min .30, 34
sup;sup .30

C
call;Basis Statements

call21, 22, 26, 32, 35
call;Basis Statements;call23
CGM files .19
cgm2ncgm;NCAR utilities

cgm2ncgm .19, 20
cgm;Basis Commands

cgm;Graphics Commands
cgm .20, 49

chameleon;Basis Types
chameleon10, 17, 26

character strings24, 27, 36
character;Basis Types

character .12, 16

51

close;Basis Commands
close. .39, 40

cmplx;Built-in Functions
cmplx .24

column major order.22, 29, 32
command. .35, 47, 48

Argument specifiers48
e or E .37, 48
s or S. .48

Delimiter specifiers
a or A .48
c or C .48
q or Q .48
s or S. .37
w or W .37, 48

Comment lines .8
Compiled Functions7, 29

basclose;basclose21–23
basopen;basopen21–23

complex numbers .24
complex;Basis Types

complex .12, 30
cos .29
cos;Built-in Functions

cos .9, 10, 17
create;Basis Commands

create .39, 40
ctrans;NCAR utilities

ctrans .19, 20

D
debug .9, 10, 41, 44, 46
Delimiter specifiers. .48

default delimiters48
diff .26
do...until;Basis Statements

do...until .17
do;Basis Statements

do .7, 14–16
double;Basis Types

double .12, 30

E
else;Basis Statements

else .14, 43

elseif;Basis Statements
elseif .43

end;Basis Commands
end .20

enddo;Basis Statements
enddo .14–16

endf .25–27, 32, 35, 43
endif;Basis Statements

endif .14, 16, 43
endwhile;Basis Statements

endwhile .17
Environment Variables19
environment variables1

BASIS ROOT. .1
DISPLAY .1
MANPATH .1
NCARG ROOT .1

eof .22
Error Recovery .41
errortrp;Error Recovery

errortrp .41
exp .17
ezc .19, 20
ezcdodev .49
ezcshow;Graphics Commands

ezcshow;Basis Commands
ezcshow .20

EZN .2
ezn .19, 48

F
false .9, 11, 12, 20, 30
float;Built-in Functions

float .24
for;Basis Statements

for .17
forget;Basis Commands

forget .40
format;Built-in Functions

format. .24
frame;Graphics Commands

frame;Basis Commands
frame .20

function25–27, 32, 35, 43
Functions .25, 29

52 Index

fuzz .9, 10, 47

G
GKS (Graphical Kernel System)19
global .17, 27

I
idt;NCAR utilities

idt .19
if .43
if;Basis Statements

if .7, 10, 14, 16, 43
imaginary constants .12
indirect;Basis Types

indirect17, 26, 27, 35
integer;Basis Types

integer10, 12, 14–16, 21, 22, 30
iota .20
iota;Built-in Functions

iota .20, 29, 31, 32

K
kaboom;Error Recovery

kaboom .41

L
line break .24
list;Basis Commands

list6, 7, 9, 20, 25, 29, 39, 47, 48
list;Basis Commands;list37
logical;Basis Types

logical9, 11, 12, 30
loops .14, 15, 17

M
macro32, 37, 39, 47, 49
macro arguments

$1;command
$1 .49

macros. .7, 48
matrix multiply .11, 15
mod .16

N
NCAR’s GKS .19

nf;Graphics Commands
nf;Basis Commands

nf .20
no .9, 22, 24
noise .22

O
off .9, 41, 48
on .9, 48
open;Basis Commands

open .40
outer;Built-in Functions

outer .20
output graphics .23
output tty .23

P
par package. .7
parser .7, 29, 42, 43
pass by reference .8, 26
pass by value .8, 26
PDB .39
PFB .39, 40
pi .9, 10, 47, 48
plot;Basis Commands

plot;Graphics Commands
plot .20

plotm;Basis Commands
plotm;Graphics Commands

plotm .49
plotz;Basis Commands

plotz;Graphics Commands
plotz .20

Postscript .19
psum;Built-in Functions

psum. .33

R
range notation .13
range;Basis Types

range. .17
read;Basis Commands

read .11
real(8) .40
real;Basis Types

Index 53

real12, 20–22, 26, 27, 30–32
remark .32
reserved words .16
restore;Basis Commands

restore .40
resume;Basis Commands

resume. .11, 49
return;Basis Statements

return .24–26, 43

S
scope .17
second;Compiled Functions

second .26
Semantic Errors41, 42, 44
shape;Built-in Functions

shape26, 29, 31–33
sin .17
spanl;Built-in Functions

spanl .31
sqrt;Built-in Functions;sqrt17, 29, 30
Square brackets .16
stdout .23
stdplot .23
steerable applications .2
Stream Input .21
stream input .21–23
Stream Output .23
strlen;Built-in Functions

strlen. .32
sum;Built-in Functions

sum .15, 33
sun .33, 42

switches .9, 10
Syntax Errors .42, 43

T
tek .48, 49
Tektronics .19
timer;Basis Commands

timer .48
titles;Basis Commands

titles;Graphics Commands
titles .20

trace file;Error Recovery

trace file .10, 41, 46
transpose;Built-in Functions

transpose .16
true .9, 12, 30
type coercion .30
type hierarchy .30

V
vectors .15

W
where;Built-in Functions

where .33, 34, 42
while;Basis Statements

while .17, 22
win;Basis Commands

win;Graphics Commands
win .20

write;Basis Commands
write;saving data in files40

write;Basis Commands;write39

X
X-Windows .19

Y
yes9, 10, 22, 24, 41, 44, 46
yuck;Error Recovery

yuck .41

54 Index

	The Basis System
	Environment Variables
	Basis Is Both a Program and a Development System
	About This Manual

	Getting Started
	What is Basis?
	Starting the Program
	Getting Information
	Comparison of Basis and Fortran

	The Basis Language
	Assignments and Expressions
	Input from a File
	Some Differences from Fortran
	Declaring Variables
	Some Elements of Array Syntax
	IF Statements
	Looping Constructs
	Vector Syntax
	Differences between Basis and Fortran

	Graphics
	Text Input and Output
	Stream Input
	Stream Output

	Functions
	Defining Functions
	Arguments Passed by Value
	Further Differences with Fortran

	 Built-in and Compiled Functions
	max and min Versus sup and inf
	iota and spanl
	Information about Arrays: length, shape
	Summing Arrays: sum
	Vector Conditionals with where

	Commands
	The Basis Command Capability

	Saving and Restoring Code and Data in Binary
	The PFB Package
	Reading in Previously Saved Data

	Error Recovery and Diagnosis
	Error Recovery
	Syntactic and Semantic Errors

	Deciphering Commands
	Index

